An Overview of the RHIC Experimental Program

Brian A. Cole Columbia University

RHIC Winter Workshop at LBNL January 7, 1999

Outline

- 1. RHIC Status/Schedule
- 2. BRAHMS
- 3. PHENIX
- 4. PHOBOS
- 5. STAR
- 6. Comparison of physics capabilities
- 7. Expected day-1 configurations

The RHIC Collider

Accelerator Schedule

- October 6, 1998 RHIC announces completion of magnet construction
- March 1, 1999 RHIC Starts cool-down
- March 1999 Attempt to circulate beam in one ring
- June-July 1999 Commissioning run
- November 1999 Start of "year-1" physics run

The Brahms Experiment @ RHIC

D1,D2,D3,D4,D5: dipole magnets

T1,T2,T3,T4,T5, TPC1 TPC2: tracking detectors

H1,H2,TOFW: Time-of-flight detectors RICH, GASC: Cherenkov detectors

BRAHMS Magnets D1 and D2 on Platforms in 2 o'clock

BRAHMs TPC under test

Central Au + Au at RHIC

Acceptance of BRAHMS

Geometrical Acceptance + PID

Region II: Region 1: Region IIII With the full Forward Arm With the D1 With the Mid-Rapidity Arm - D2 (Forward Arm) Complex alone

♦(1020) Measurement

- Chiral Symmetry Restoration
- production enchancement, mass and width shift
- Channel at the Mid-Rapidity Spectrometer

Accepted y - pt distributions (Inlets: Pt)

(Inlets: signal - background)

High-p, in Brahms

High pt measurements

of magnetic fields. can be done for central Au+Au collisions in about 1 week in 2 settings Example of quality of spectrum of π^+ at y=2.4. The measurement

another week. Extensions to $p_t \approx 6 \text{ GeV/c}$ with Δp_t of .5 GeV/c can be done in

The PH ENIX Experiment @ RHIC

- Mid-rapidity hadron, γ , e spectrometers, forward μ spectrometers
- Silicon multiplicity/vertex detector
- Particle identification by TOF, Cherenkov, dE/dx, absorber penetration

The Major Facility Hall on January 4, 1999

- μ-id panels, West Arm EM-calorimeter fully installed
- Central magnet being mapped
- Shield wall construction under way

PHÆENIX Construction Pictures

Fully Assembled RICH Vessel

EM-Cal installation on West ARM

μ identifier panel installation

Nearly complete DC (done now)

Tracking in the PHXENIX central Arms

PHENIX Acceptance

PH#ENIX Vector Meson Measurements

Assumptions re: RHIC performance

- By end of year one -- RHIC reach 10% design Luminosity
- Year-1 integrated Luminosity of 20 μb⁻¹
- → 120 Million min-bias events, 12 Million central events

<u>φ→KK</u>

- Assuming 1/2 of one arm -- day-1 configuration (TOF from EM-cal)
- Low-pt cutoff due to PHENIX single particle p cut, K decay
- "Central" events (10 %) -- 10K φ's (~1/3 of total)

PHIENIX Vector Meson Measurements (2)

$VR \rightarrow ee decays$

Experiments @

- Acceptance depends critically (compared to $\phi \rightarrow KK$) on PHENIX configuration
- Little or no acceptance in 1 arm -- need at least two 1/2 arms
- \rightarrow Need more than PHENIX day-1 for VR \rightarrow e⁺e⁻
- For two 1/2 arms and 12 Million central Au+Au
- Note: this does not include hadron backgrounds

Vector Meson	S/B	Yield	Uncertainty		
ρ	1/1264	300	600		
ω	1/40	380	130		
ф	1/5	200	35		
J/ψ	>> 1	320	20		

- These results are "old"
- Do not include "albedo"
 - -matters for $p_t < 2 \text{ GeV/c}$
- Include asymmetry cut
- S/B > 1 for $p_t > 1.5-2$
- For high-p_t single π^0
 - -Good acceptance, resolution
 - -High rate: ~1/hour @ 10 GeV for 10% design luminosity
- Direct photons
 - -Situation is murky
 - Albedo background is a serious problem.
 - -Systematics, systematics,...
 - -> "doable" for $p_t > 2 \text{ GeV/c}$
 - $-\pi^0$ photons start overlapping @ 10-15 GeV/c

Analysis by T. Awes

PHIENIX Muon System

A prototype muon tracker sector

Muon Identification

- Absorb hadrons in central magnet yoke.
- Measure the remaining particles.
- Absorb remnant hadrons in μ-Id steel.

The PHOBOS experiment @ RHIC

- Two near-mid-rapidity spectrometers
 - $-\Delta \eta = 1$ centered on $\eta = 0.5$
 - $-\Delta \phi = 11^{\circ}$
- $dn/d\eta$ for $|\eta| < 5.4!!!$
 - $-\delta\eta = 0.1$, $\delta\phi = \pi/16$
- Si technology everywhere
- Except for TOF walls

Monte-Carlo Study of performance

Including

- Landau tails
- Conversions
- Secondaries

PH®BOS Construction

- The PHOBOS magnet in the 10 O'clock hall
- Moved here after assembly/testing @ AGS

Spectrometer Si detectors

Used in last 2 planes

- Each of 3 "sensors" has:
 - 256 pads: 4 rows, 64 cols
 - each pad 0.667 x 19 mm.

Used in rear planes

Each sensor same as above

Used in front 4 planes

- Each of 2 sensors has:
 - 1540 pads: 22 rows, 70 cols
 - each pad 1x1 mm

Au+Au Central Event?

PHOBO 3 Acceptance

July 6-16, 1997

RHIC 7 neory Workshop

B.A. Cole

Reconstructed ϕ decays in 1 week (full PID)

 Γ =5.5+-0.7 MeV (4.4 input)

The Solenoidal TPC At RHIC

- Large acceptance experiment will measure 1000's charged particles
- Time Projection Chamber + good vertex tracking + EM calorimetry
- Outstanding hadronic signals coverage with some leptonic coverage
- Complimentary to the rest of the RHIC program

The Wide Angle Hall - Dec 17, 1998

• TPC "on detector" cabling complete (also trigger barrel)

Experimental Signal Coverage(2)

Timescale	Probe	STAR	PHOBOS	BRAHMS	PHENIX
Fluctuations/	DCC Formation	X	X		4 P 191
X-symmetry restoration					
	Fluctuations, Event-hy-Event				
	dN/dη fluctuations	X	X		η < 3
	e ve nt-by-e ve nt <p<sub>t></p<sub>	X			
	event-by-event K/π	X			
Hadronization	Hadrons.				
	Identified hadron spectra	X	low-p _t	X	X
	HBT Interferometry, π/K	X	low-p _t	X	X
	Strangeness: K ⁺ /K	X	low-p _t	X	X
	Strangeness: A, K,, E	X	?		
	Anti-protons	low-pt	low-p _t	X	X
	Strange anti-baryons	X			
Hydrodynamics	Glohal Variables				
	E _b dN/dy	X	X	X	X
	Eliptic flow	X	X		~
	Mt spectra, transverse expansion	X	X	X	X

Summary

- Good coverage of most suggested observables
- Redundancy on many of these -- especially in hadron sector
- The vector resonance/photon signals heavily dependent on PHENIX
 - and thus PHENIX's implementation schedule ...

Sector Testing with Cosmic Rays 10/19/98-10/30/98

STAR Coverage

- TPC's -- Central: -1.5 < η < 1.5, Forward: 2.5 < $|\eta|$ < 4
- Silicon -- Silicon Vertex Tracker + SDD: $-1 < \eta < 1$
- EM Calorimeter -- Barrel: $-1 < \eta < 1$, one endcap: $1 < \eta < 2$
- Particle identification by dE/dx in TPC & SVT, limited TOF

STAR EM Measurements

One Example -- J/ψ

- Analysis by Tom LeCompte
 - Electron id by EM-Cal
 - Fake hadron backgrounds
 - Conversions
 - Dalitz decays
- Significant background to J/ ψ
 - even for e $p_t > 1.9$, $\psi p_t > 3$ GeV/c
- This result ~ 1.5 years old
- Possible improvements
 - dE/dx rejection of hadrons
 - ⇒ small hadron reduction improves S/B substantially
 - Shower "shape"
 - STAR RICH
- This was done when calorimeter design was not finalized

Physics Simulations - Event by Event

Reconstructed K/π ratios Analysis by FQ. Wang

hijet events

Reconstructed slope parameters Analysis by I. Sakrejda

Temperature correlation

July 6-16, 1997

B.A. Cole

STAR EM Measurements

One Example -- J/ψ

- Analysis by Tom LeCompte
 - Electron id by EM-Cal
 - Fake hadron backgrounds
 - Conversions
 - Dalitz decays
- Significant background to J/ ψ
 - even for e $p_t > 1.9$, $\psi p_t > 3 \text{ GeV/c}$
- This result ~ 1.5 years old
- Possible improvements
 - dE/dx rejection of hadrons
 - ⇒ small hadron reduction improves S/B substantially
 - Shower "shape"
 - STAR RICH
- This was done when calorimeter design was not finalized

Experimental Signal Coverage

Timescale	Probe	STAR	PHOBOS	BRAHMS	PHEND
initial Collision	Hard Scattering				
	Single jet via leading particle	X		X	X
	photon + jet (leading particle)	$p_{\gamma} > ?$	da bilanda ka	4	X
	2 high-pt hadron ang. corr.	x	·		X
	jet + jet	> 5 Gev/c			
		-			
	Mini-jet production				
	dn/d η	X	X	X	X
	Stopping				
	proton dn/dy @ large y			X	
Deconfine ment	High-Mass Vector Mesons		gilgilad yanda yanda karanda kalanda yanda kalanda yanda kalanda ya da ka		
	J/ψ, ψ' screening	p _t >3 Ge V			X
	Y (non)screening				X
Chiral Restoration	Low-Mass Vector Mesons		***************************************		
	ρ, ω, φ -> di-leptons	$p_t > ?$			X
	φ branching ratios	maybe			X
	♦ → K 'K	X	X	X	X
QGP The rmalization	Photons.		***************************************		
	π ⁰ , η, η'	$p_t > ?$		# # # # #	X
	continuum direct; very soft				X
QGP Thermalization	Dileptons.		***************************************		-
	non-resonant: 1-3 GeV				X
	soft continuum, <1 GeV				X
QGP Thermalization	Heavy Onark Production				
	open charm	w/SVT			е-ш
	open charm via single lepton	000000			e or µ